Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612003

RESUMO

The combination of an absorbing structure and a road is a promising strategy for road deicing using microwaves. In this study, cement mortar (CM) specimens containing a carbon fiber screen (CFS) were prepared to concentrate electromagnetic losses on a road surface. The effect of the size and depth of the CFS on the surface heating efficiency of the microwave was studied and optimized, and a microwave deicing experiment was conducted. The results indicated that the destructive interference produced by the CFS led to the effective surface heating of the CM/CFS specimens. The optimal surface heating rate was 0.83 °C/s when the spacing, depth, and width of the CFS were 5.22, 13.31, and 2.80 mm, respectively. The deicing time was shortened by 21.68% from 83 to 65 s, and the heating rate increased by 17.14% from 0.70 to 0.82 °C/s for the specimen with CFS-1, which was 15 mm depth. Our results demonstrate that CM/CFS composite structures can be effectively applied to increase the capacity and accelerate the development of the microwave deicing of roads.

2.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365569

RESUMO

This paper mainly studies the compatibility and properties of octavinyl oligomeric silsesquioxane nanomaterial (nano-OvPOSS)-modified asphalt, in comparison with those of traditional zinc oxide nanomaterial (nano-ZnO) and silica nanomaterial (nano-SiO2), through the method of molecular dynamics simulation. Nano-OvPOSS, an organic-inorganic nano-hybrid material, is studied for the first time in the application of asphalt modification. By studying different sizes and types of nanomaterials, this paper elucidates the superiority of nano-OvPOSS as an asphalt modifier owing to the unique microstructure of eight organic groups of its inorganic framework. According to the results, nano-OvPOSS does not aggregate in the modified asphalt system and displays the best compatibility with asphalt when compared with nano-SiO2 and nano-ZnO. Moreover, nano-OvPOSS exhibits the most favorable compatibility with resinous oil out of the four asphalt components. The size of nano-OvPOSS determines its compatibility with asphalt. The smaller the particle size of nano-OvPOSS, the better its compatibility with asphalt. Therefore, out of all the four sizes of nano-OvPOSS (4.4 Å, 7 Å, 10 Å, and 20 Å) adopted in this study, the 4.4 Å nano-OvPOSS exhibits the best compatibility with asphalt. Additionally, compared with nano-SiO2 and nano-ZnO, nano-OvPOSS is capable of attracting more asphalt molecules around it so that it reduces the largest amount of ratio of free volume (RFV) of matrix asphalt, which can be reduced by 9.4%. Besides these characteristics, the addition of nano-OvPOSS into the matrix asphalt contributes to higher heat capacity, bulk modulus, and shear modulus of the asphalt system, which were increased by 14.3%, 74.7%, and 80.2%, respectively, thereby guaranteeing a more desirable temperature stability and deformation resistance in the asphalt system. Accordingly, nano-OvPOSS can be employed as a viable asphalt modifier to ensure a well-rounded performance of modified asphalt.

3.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236070

RESUMO

The present research is carried out to inspect the influence of nano-OvPOSS (octavinyl oligomeric silsesquioxane) with different particle sizes on styrene-butadiene-styrene (SBS) modified asphalt through the method of molecular dynamics simulation. This nanomaterial is investigated for the first time to be used in asphalt modification. With the construction of modified asphalt simulation models and the analysis of their mixing energy, radius of gyration (Rg), radial distribution function (RDF), ratio of free volume (RFV), heat capacity, bulk modulus, and shear modulus, this study elucidates the influence of nano-OvPOSS on the compatibility between SBS and asphalt, on the structure of SBS as well as that of asphalt molecules and on the temperature stability and mechanical properties of SBS modified asphalt. The results show that nano-OvPOSS not only is compatible with SBS as well as with asphalt, but also is able to improve the compatibility between SBS and asphalt. Nano-OvPOSS is able to reinforce the tractility of branched chains of SBS and make SBS easier to wrap the surrounding asphalt molecules. The free movement space of molecules in the SBS modified asphalt system also shrinks. Moreover, the addition of nano-OvPOSS into SBS modified asphalt results in higher heat capacity, bulk modulus, and shear modulus of modified asphalt. All of these effects contribute to a more stable colloidal structure as well as more desirable temperature stability and deformation resistance of the modified asphalt system. The overall results of the study show that nano-OvPOSS can be used as a viable modifier to better the performance of conventional SBS modified asphalt.

4.
Waste Manag Res ; 40(11): 1660-1668, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35686983

RESUMO

Municipal solid waste incineration fly ash (FA) contains high contents of salts and high concentrations of heavy metals, which makes FA disposal extremely difficult. However, heavy metal elements could potentially be separated from FA during thermal treatment process to make it possible to be recycled. This work aims to study the volatilization of heavy metals in FA treated by molten salt method. The influence of polyvinyl chloride (PVC) and coal ash (CA) on volatilization of heavy metals was investigated. Within the scope of this study, the highest heavy metal removal rate can be under the condition: the calcium chloride/sodium chloride weight ratio 1:1, the FA/molten salt weight ratio 1:10, treatment temperature 1000°C for 2 hours in reducing atmosphere. The volatilization rates of lead, zinc, copper, chromium and manganese were 86.20, 67.53, 65.24, 50.07 and 39.45%, respectively. On the basis of molten salt treatment, adding PVC could promote the volatilization of heavy metals. The volatilization rate of lead was 96.71%, and the volatilization rates of chromium and manganese were higher than 60% when the content of PVC was 5 wt%. When adding 10 wt% CA and 1 wt% polyvinyl chloride, the volatilization rate of lead could reach 100%. The experiments and thermodynamic calculations showed that silicon dioxide and aluminium oxide in CA and hydrochloric acid decomposed from PVC could promote the chlorination and volatilization of heavy metals. The volatilized heavy metal chlorides provided the possibility of recovery and utilization of heavy metals in FA.

5.
Waste Manag Res ; 38(1): 27-34, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709930

RESUMO

This research investigated the heavy metal leaching property and cementitious material preparation by treating municipal solid waste incineration fly ash through the molten salt process. The results indicated that the heavy metal thermal evaporation of fly ash in the molten salt was related to molten salt composition, heat treatment temperature and atmosphere. After treatment with sodium chloride molten salts (contains 10-50 wt% calcium chloride) from 900°C to 1000°C for 2 h, the leaching concentrations of lead, cadmium, copper, zinc and other heavy metals in fly ash were decreased more than 90% and they could fully meet with the landfill standard. Moreover, after molten salt treatment, the weight fraction of fly ash was reduced by 50 wt% than the original one, and the fly ash has been changed as a kind of cementitious material, which has excellent cementitious property. The X-ray diffraction result indicated that the main crystal mineral composition of cementitious materials obtained was alite, belite, alinite and calcium sulphate.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Incineração , Material Particulado , Cloreto de Sódio , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...